The canonical complex of the weak order

Doriann Albertin (LIGM, Université Gustave Eiffel) Vincent Pilaud (CNRS \& LIX, École Polytechnique)

Keywords : lattices, arc diagrams, simplicial complexes, weak order, canonical representations

Canonical representations of elements

Canonical join representation of $x=$ unique antichain $A=: \mathbf{c j r}(x)$ such that :

$$
\left\{\begin{array}{l}
\bigvee A=x, \\
A \text { inclusion minimal, } \\
A \text { order minimal. }
\end{array}\right.
$$

Join-semidistributive lattice $L=$ all elements have a canonical join representation.
$\{$ Join-irreducible elements $\}=\mathcal{J I}(L)=\{x \mid \boldsymbol{\operatorname { c j r }}(x)=\{x\}\}$.
Analogous definitions for meets.

Non-crossing arc diagrams [Rea15]

Weak order $=$ permutations ordered

Canonical join complex [Rea15, Bar19]

$\mathscr{C}_{\vee} \mathscr{C}(L)=$ simplicial complex on $\mathcal{J} \mathcal{I}(L)$ whose faces are the join canonical representations.

Proposition. $\mathscr{C}_{V} \mathscr{C}(L)$ is flag. (minimal non-faces are edges)

Proposition. For the weak order,
$\mathscr{C}_{\vee} \mathscr{C}$ is (isomorphic to) the non-crossing complex.

Canonical join complexes of quotients

Congruence $=$ equivalence relation \equiv such that
$x \equiv x^{\prime}$ and $y \equiv y^{\prime} \quad \Rightarrow \quad x \vee y \equiv x^{\prime} \vee y^{\prime}$ and $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$.
Theorem. A congruence \equiv is determined $-\cdots \quad \cdot-\cdot \cdot-$ by the set $\mathcal{I}_{\equiv}^{\vee}$ of join-irreducibles uncontracted by \equiv. These sets are the ideals of the forcing order.

Quotient $L / \equiv=$ lattice of classes of \equiv.
Theorem. $\mathscr{C}_{\vee} \mathscr{C}(L / \equiv)$ is the subcomplex of $\mathscr{C} \vee \mathscr{C}(L)$ induced by $\mathcal{I}_{\equiv}^{\vee}$.

References

D. A. \& V. Pilaud, The canonical complex of the weak order ('22+)
E. Barnard, The canonical join complex ('19)
N. Reading, Noncrossing arc diagrams and canonical join representations ('15)

Canonical representations of intervals

Canonical representation of $[x, y]=\mathbf{c j r}(x) \sqcup \mathbf{c m r}(y)$.

Semi-crossing arc bidiagrams

Semi-crossing arc bidiagram $=D_{\vee} \sqcup D_{\wedge}$ the union of two NCADs with no strong crossing.

Canonical complex

$\mathscr{C} \mathscr{C}(L)=$ simplicial complex on $\mathcal{J I}(L) \sqcup \mathcal{M I}(L)$ whose faces are the canonical representations.

Proposition. $\mathscr{C} \mathscr{C}(L)$ is flag.
Proposition. $\mathscr{C} \mathscr{C}(L)$ contains $\mathscr{C} \mathscr{C}(L)$ and $\mathscr{C} \wedge \mathscr{C}(L)$.
Proposition. For the weak order, $\mathscr{C} \mathscr{C}$ is (isomorphic to) the semicrossing complex.

Canonical complexes and quotients

Theorem. $\mathscr{C} \mathscr{C}(L / \equiv)$ is the subcomplex of $\mathscr{C} \mathscr{C}(L)$ induced by \mathcal{I}^{\vee} and $\mathcal{I} \triangleq$.

Kreweras complement

Algorithm. Given \equiv and $\delta_{\vee}\left(\pi_{\downarrow}^{\equiv}(\sigma)\right)$, find $\delta_{\wedge}\left(\pi_{\uparrow} \equiv(\sigma)\right)$.

- Take the lower ideal induced by $\delta_{\vee}\left(\pi_{\downarrow} \overline{\bar{\downarrow}}(\sigma)\right)$ in the weak order on arcs,
- intersect with $\mathcal{I} \xlongequal{\vee}$,
- remove fusions,
- take the maximal elements.

Problem. Generalize to any semidistributive lattice?

