The canonical complex of the weak order <u>Doriann Albertin</u> (LIGM, Université Gustave Eiffel) Vincent Pilaud (CNRS & LIX, École Polytechnique)

S CONFORMUTION

Keywords : lattices, arc diagrams, simplicial complexes, weak order, canonical representations

 $a \lor b$

 $\bigvee \emptyset$

Canonical representations of elements

Canonical join representation of x =unique antichain $A =: \mathbf{cjr}(x)$ such that : $\begin{cases} \bigvee A = x, \\ A \text{ inclusion minimal,} \\ A \text{ order minimal.} \end{cases}$

Join-semidistributive lattice L = all elements have a canonical join representation.

{*Join-irreducible elements*} = $\mathcal{JI}(L) = \{x | \mathbf{cjr}(x) = \{x\}\}.$

Canonical representations of intervals

Canonical representation of $[x, y] = \operatorname{cjr}(x) \sqcup \operatorname{cmr}(y)$.

Semi-crossing arc bidiagrams

Semi-crossing arc bidiagram = $D_{\vee} \sqcup D_{\wedge}$ the union of two NCADs with no strong crossing.

Analogous definitions for meets.

Non-crossing arc diagrams [Rea15]

Weak order = permutations ordered by inclusion of inversion sets.

Non-crossing arc diagrams (NCAD) = set of pairwise non-intersecting arcs with no common left or right endpoint.

Theorem. δ_{\vee} and δ_{\wedge} are bijections between permutations and NCADs. Moreover, $\mathbf{cjr}(\sigma) = \{\delta_{\vee}^{-1}(\alpha) \mid \alpha \in \delta_{\vee}(\sigma)\},\$ $\mathbf{cmr}(\sigma) = \{\delta_{\wedge}^{-1}(\alpha) \mid \alpha \in \delta_{\wedge}(\sigma)\}.$

In particular, join-irreducible

Canonical complex

 $\mathscr{CC}(L) =$ simplicial complex on $\mathcal{JI}(L) \sqcup \mathcal{MI}(L)$ whose faces are the canonical representations.

Proposition. $\mathscr{CC}(L)$ is flag.

Proposition. $\mathscr{CC}(L)$ contains $\mathscr{CVC}(L)$ and $\mathscr{CAC}(L)$.

Proposition. For the weak order, *CC* is (isomorphic to) the semicrossing complex.

permutations are single arcs.

Canonical join complex [Rea15, Bar19]

 $\mathscr{C}_{\mathcal{V}}\mathscr{C}(L) = \text{simplicial complex}$ on $\mathcal{JI}(L)$ whose faces are the join canonical representations.

Proposition. $\mathscr{C}_{\mathcal{V}}\mathscr{C}(L)$ is *flag.* (minimal non-faces are edges)

Proposition. For the weak order, C_VC is (isomorphic to) the non-crossing complex.

Congruence = equivalence relation \equiv such that $x \equiv x'$ and $y \equiv y' \Rightarrow x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$.

Canonical complexes and quotients

Theorem. $\mathscr{CC}(L/\equiv)$ is the subcomplex of $\mathscr{CC}(L)$ induced by $\mathcal{I}_{\equiv}^{\vee}$ and $\mathcal{I}_{=}^{\wedge}$.

Theorem. A congruence \equiv is determined by the set $\mathcal{I}_{\equiv}^{\vee}$ of join-irreducibles uncontracted by \equiv . These sets are the ideals of the forcing order.

Quotient $L/\equiv =$ lattice of classes of \equiv .

Theorem. $\mathscr{C}_{\vee}\mathscr{C}(L/\equiv)$ is the subcomplex of $\mathscr{C}_{\vee}\mathscr{C}(L)$ induced by $\mathcal{I}_{\equiv}^{\vee}$.

References

D. A. & V. Pilaud, The canonical complex of the weak order ('22+)E. Barnard, The canonical join complex ('19)

N. Reading, Noncrossing arc diagrams and canonical join representations ('15)

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$

- Take the lower ideal induced by $\delta_{\vee}(\pi_{\downarrow}^{\equiv}(\sigma))$ in the weak order on arcs,
- intersect with $\mathcal{I}_{\equiv}^{\vee}$,
- remove fusions,
- take the maximal elements.

Problem. Generalize to any semidistributive lattice ?